

One Channel H-Bridge Power Driver AM1107EA

Features and Benefits

- Wide supply voltage range up to 11V
- Maximum continuous current output up to 1.5A
- Low R_{DS(ON)} for high efficient H-bridge output.
- Built-in LDO Regulator 2.7V
- LDO output driver current 100mA
- eSOP-8 package for small size PCB layout
- Over current protection
- Over temperature protection
- Low standby current
- Low quiescent current

Application

- Robotics (R/C servo, Sweeping robot)
- Toys (R/C car, R/C aircraft)
- Small Appliances (Reduce PCB surface area and perimeter)
- Any relevant DC motor applications.

Description

The AM1107EA is a channel H-Bridge driver with a build in Low Dropout Regulator (LDO). It provides integrated motor-driver solution for high current power motion control applications. The output driver block consists of N-channel and P-channel power MOSFETs configured as H-Bridge to driver DC motor.

The AM1107EA maximum operational voltage is 11V. It can supply up to 1.5A of output continuous current and 2.5A of output peak current. There are internal shutdown function for over-temperature protection and over-current protection ($I_{OCP} = 2.5 \text{ A}$).

Package material is Pb-Free Product & RoHS compliant for the purpose of environmental protection and for sustainable development of the Earth.

• Ordering Information

Orderable Part Number	Package	Marking	
AM1107EA	eSOP-8	AM1107EA	

• Absolute Maximum Ratings ($T_A=25^{\circ}C$)

Parameter	Symbol	Limits	Unit
Power Supply voltage	PVCC/VCC	12	V
BEMF maximum voltage	VCC _(BEMF)	14 (NOTE**)	V
Output continuous current	locont	1.5 (NOTE*)	A
Output peak current	Iomax	2.5	A
Operate temperature range	T _{opr}	-20~+85	°C
Storage temperature range	T _{stg}	-40~+150	°C

Note *: Based on 40x40mm² FR4 PCB (1 oz.) at double side PCB

Note **: Pulse< 100msec @ motor load R=2.65 Ω , L=1.82mH condition

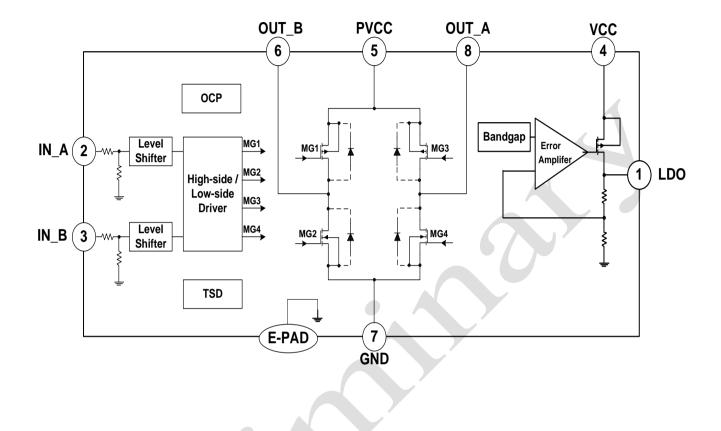
Recommended operating conditions (T_A =25°C)

(Set the power supply voltage taking allowable dissipation into considering)

Parameter	Symbol	Min	Тур	Max	Unit
Power Supply voltage for H-Bridge	PVCC	2.0(Note	2.0(Note**) 11		V
IC operating voltage	VCC	2.0(Note**) 11		V	
Signal input IN_A and IN_B voltage	V _{IN_x}	-0.3		Vcc+0.3	V
H-bridge output continuous current	I _{OUT}	0	1.5(Note*)		A
Externally applied PWM frequency	F _{IN_x}	0.02		65	KHz

Note* : Based on 40x40mm² FR4 PCB (1 oz.) at double side PCB

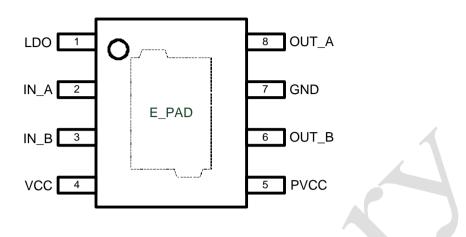
Note**: The VCC/PVCC should be considered when using 2.7V LDO.



• Electrical Characteristics (Unless otherwise specified, TA = 25° , PVCC=VCC=6V)

Deremeter	Symbol	Limit		Unit	Conditions	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Power Supplies						
Supply current	I _{CC}		35		uA	Input signal IN_A/B= L/H 、 H/L or H/H, No load on OUT_A/B, no load on LDO
Standby current	I _{STB}			20	uA	Input signal IN_A/B= L/L, No load on OUT_A/B, no load on LDO
IN_x Inputs		•		•	•	
Input H level voltage	V _{IN_XH}	2.0		V _{cc}	V	
Input L level voltage	V _{IN_XL}	0		0.7	v	
Input H level current	I _{IN_X}		30		μΑ	$V_{CC} = 6V$, $V_{IN_X} = 3V$
Input frequency	F _{IN_X}	0.02		65	kHz	
Input pull down resistance	R _{IN_X}		100		kΩ	
H-bridge FETs						
On-resistance	$R_{ds(on)}$		0.58		Ω	I _O = 0.6A Upper and Lower total
LDO parameter			×			
LDO output voltage	V _{LDO}	2.484	2.7	2.916	V	$I_{LDO} = 100 \text{mA}$
Line regulation	$\triangle V_{LDO-Line}$			50	mV	I _{LDO} = 100mA,Vcc =3.3~11V
Load regulation	$ riangle V_{LDO-Load}$			50	mV	I _{LDO} = 0~100mA
Dropout voltage	$\triangle V_{Drop}$			300	mV	I _{LDO} =100mA
Power supply rejection ratio	PSRR		45		dB	I _{LDO} =10mA, f =120Hz Vripple = 1Vp-p
TSD Protections						
Thermal shutdown protection	TSD _p		150		°C	
Thermal shutdown release	TSD _r		100		°C	

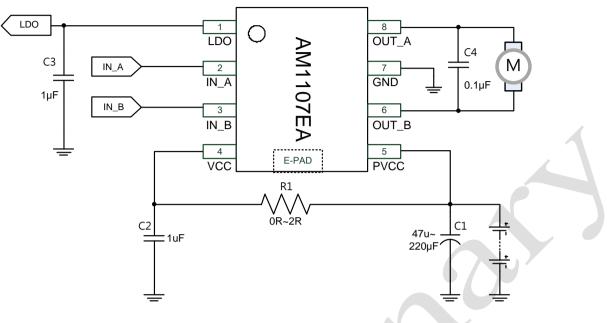
Block Diagram


Input Logic Descriptions

Function truth table

IN_A	IN_B	OUT_A	OUT_B	Mode
L	L	Hi-Z	Hi-Z	Stop
L	Н	L	Н	Reverse
Н	L	Н	L	Forward
н	Н	L	L	Brake

• Pin configuration eSOP-8



• Pin Descriptions

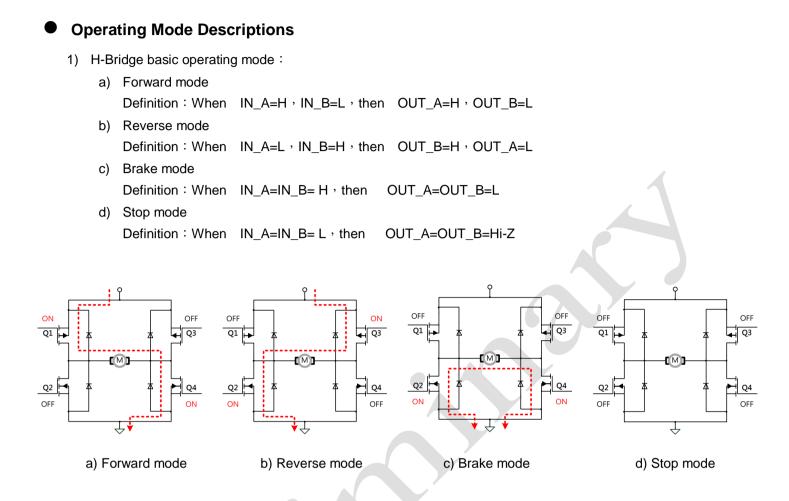
PIN No.	Pin Name	I/O	Description
1	LDO	0	Low Dropout Regulator
2	IN_A	I	Input Half Bridge A
3	IN_B	I	Input Half Bridge B
4	VCC	-	Power Supply
5	PVCC	-	Power Supply for H-Bridge
6	OUT_B	0	Output Half Bridge B
7	GND		Ground Pin
8	OUT_A	0	Output Half Bridge A
	E-PAD		Ground Pin

Application

Circuit Descriptions

The function descriptions of capacitors on the application circuit:

- C1 \cdot C2: Power supply PVCC/VCC pin capacitor:
 - The capacitor can reduce the power spike when the motor is in motion. To avoid the IC directly damaged by the PVCC/VCC peak voltage. It also can stabilize the power supply voltage and reduce its ripples.
 - 2) The C1 capacitor can compensate power when motor starts running.
 - 3) The capacitor value (μF) determines the stability of the PVCC/VCC during motor in motion. In general, 47μF capacitor is enough in low voltage power (PVCC), 1μF capacitor is enough in low voltage power (VCC). If the large voltage power or a heavy loading motor is used, then a larger capacitor would be needed.
 - 4) On the PCB configuration, the C1 · C2 must be mounted as close as possible to VCC/PVCC pin (PIN4/PIN5).


C3: The LDO output capacitor

1) The capacitor can reduce the power spike while motor is in motion; it also can stabilize the LDO output voltage and reduce its ripples.

C4: The across-output capacitor

- 1) The capacitors can reduce the power spike of motor when operating. Therefore, a 0.1µF capacitor is recommended.
- 2) On the PCB configuration, the C4 must be mounted as close as possible to OUT_A&B (PIN 6 & PIN 8).
- 3) The C4 capacitor must be added to the general application.

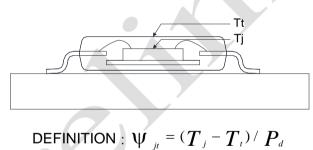
Protection Mechanisms Descriptions

1) Over-temperature protection

If the IC junction temperature exceeds 150° C (Typ.), the internal over-temperature protection function will be triggered, all FETs in the H-bridge are disabled, that will ensure the safety of customers' products. If the IC junction temperature falls to 100° C(Typ.), the IC resumes automatically.

2) Over-current protection (OCP)

While the IC conducts a large current, 2.5A (Typ), the internal over-current protection function will be triggered. The device enter protection mode of auto-recover to avoid damaging IC and system.



Thermal Information

θја	junction-to-ambient thermal resistance	43 ℃/₩
Ψjt	junction-to-top characterization parameter	3.77℃/W

> Oja is obtained in a simulation on a JEDEC-standard 1s0p board as specified inJESD-51.

- The Oja number listed above gives an estimate of how much temperature rise is expected if the device was mounted on a standard JEDEC board.
- When mounted on the actual PCB, the Oja value of JEDEC board is totally different than the Oja value of actual PCB.
- Ψjt is extracted from the simulation data to obtain Θja using a procedure described in JESD-51, which estimates the junction temperature of a device in an actual PCB.
- The thermal characterization parameter, Ψjt, is proportional to the temperature difference between the top of the package and the junction temperature. Hence, it is useful value for an engineer verifying device temperature in an actual PCB environment as described in JEDEC JESD-51-12.
- > When Greek letters are not available, Ψjt is written Psi-jt.
- Definition:

Where :

Ψjt (Psi-jt) = Junction-to-Top(of the package) °C/W

Tj= Die Junction Temp. °C

Tt= Top of package Temp at center. °C

Pd= Power dissipation. Watts

- Practically, most of the device heat goes into the PCB, there is a very low heat flow through top of the package, So the temperature difference between Tj and Tt shall be small, that is any error caused by PCB variation is small.
- This constant represents that Ψjt is completely PCB independent and could be used to predict the Tj in the environment of the actual PCB if Tt is measured properly.

• How to predict Tj in the environment of the actual PCB

Step 1 : Used the simulated Ψ jt value listed above.

Step 2 : Measure **Tt** value by using

> Thermocouple Method

We recommend use of a small ~40 gauge(3.15mil diameter) thermocouple. The bead and thermocouples wires should touch the top of the package and be covered with a minimal amount of thermally conductive epoxy. The wires should be heat-insulated to prevent cooling of the bead due to heat loss into wires. This is important towards preventing "too cool" **Tt** measurements, which would lead to the calculated **Tj** also being too cool.

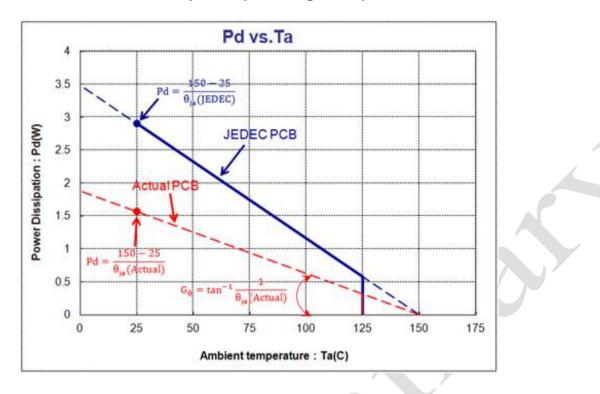
> IR Spot Method

An IR Spot method should be utilized only when using a tool with a small enough spot area to acquire the true top center "hot spot".

Many so-called "small spot size" tools still have a measurement area of 0~100+mils at "zero" distance of the tool from the surface. This spot area is too big for many smaller packages and likely would result in cooler readings than the small thermocouple method. Consequently, to match between spot area and package surface size is important while measuring **Tt** with IR sport method.

Step 3 : calculating power dissipation by

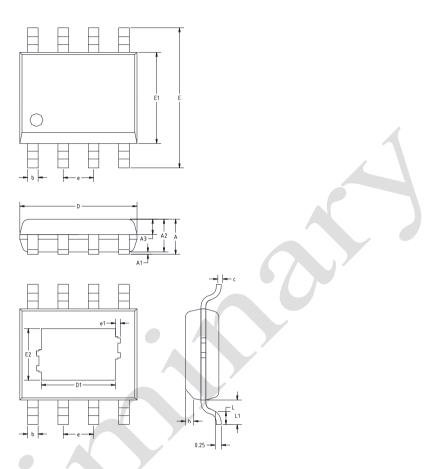
 $\mathbf{P} \cong (\mathbf{VCC} - |\mathbf{Vo}_{Hi} - \mathbf{Vo}_{Lo}|) \times \mathbf{I}_{out} + \mathbf{VCC} \times \mathbf{Icc}$


Step 4 : Estimate **Tj** value by

Tj= Ψjt × P+Tt

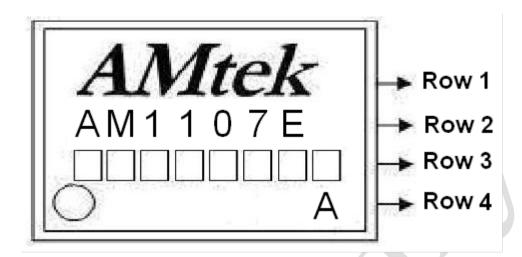
Step 5: Calculated Θ ja value of actual PCB by the known Tj

Oja(actual) = (Tj-Ta)/P

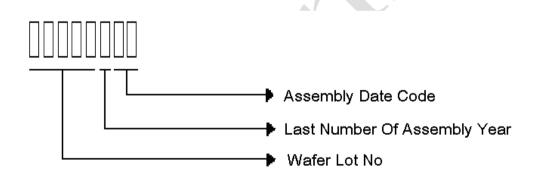


• Maximum Power Dissipation (de-rating curve) under JEDEC PCB & actual PCB

• Packaging outline --- eSOP-8


Unit : mm

SYMBOL	MILLIN	IETERS	INCHES		
	Min.	Max.	Min.	Max.	
А	-	1.65		0.065	
A1	0.05	0.15	0.002	0.006	
A2	1.30	1.50	0.051	0.059	
A3	0.60	0.70	0.024	0.028	
b	0.39	0.48	0.015	0.019	
с	0.21	0.26	0.008	0.010	
D	4.70	5.10	0.185	0.201	
E	5.80	6.20	0.228	0.244	
E1	3.70	4.10	0.146	0.161	
e	1.27	TYP.	0.05 TYP.		
h	0.25	0.50	0.010	0.020	
L	0.50	0.80	0.020	0.031	
L1	1.05 TYP		0.041 TYP.		
e1	0.10 REF		0.004 REF		
D1	3.10 REF		0.122 REF		
E2	2.21 REF		0.087 REF		



Marking Identification

NOTE:

- Row1 : Logo
- Row2 : Device Name
- Row3 : Wafer Lot No · Assembly Year · Assembly Date Code
- Row4 : Product designate code, we type A to discriminate

Example: Wafer lot no is GF530 + Year 2016 is G + Week 15 is 15 [,] we type "GF530G15" The last code of assembly year, explanation as below: :

(Year : A=0,B=1,C=2,D=3,E=4,F=5,G=6,H=7,I=8,J=9. For example: year 2016=G)